Automatically Evading Classifiers: A Case Study on PDF Malware Classifiers
نویسندگان
چکیده
Machine learning is widely used to develop classifiers for security tasks. However, the robustness of these methods against motivated adversaries is uncertain. In this work, we propose a generic method to evaluate the robustness of classifiers under attack. The key idea is to stochastically manipulate a malicious sample to find a variant that preserves the malicious behavior but is classified as benign by the classifier. We present a general approach to search for evasive variants and report on results from experiments using our techniques against two PDF malware classifiers, PDFrate and Hidost. Our method is able to automatically find evasive variants for both classifiers for all of the 500 malicious seeds in our study. Our results suggest a general method for evaluating classifiers used in security applications, and raise serious doubts about the effectiveness of classifiers based on superficial features in the presence of adversaries.
منابع مشابه
Poster: Evading Web Malware Classifiers using Genetic Programming
Malware classifiers based on machine learning models have become increasingly popular. These classifiers use a combination of structural and dynamic features to detect malware in various domains, including PDF, binaries, and web pages. We propose to use genetic programming techniques to automatically generate variants of malicious web pages that evade state-ofthe-art classifiers. Our method bui...
متن کاملPoster: Automatically Evading Classifiers A Case Study on Structural Feature-based PDF Malware Classifiers
Machine learning methods are widely used in security tasks. However, the robustness of these models against motivated adversaries is unclear. In this work, we propose a generic method that simulates evasion attempts to evaluate the robustness of classifiers under attack. We report results from experiments automatically generating malware variants to evade classifiers, from which we have observe...
متن کاملHardening Classifiers against Evasion: the Good, the Bad, and the Ugly
Machine learning is widely used in security applications, particularly in the form of statistical classification aimed at distinguishing benign from malicious entities. Recent research has shown that such classifiers are often vulnerable to evasion attacks, whereby adversaries change behavior to be categorized as benign while preserving malicious functionality. Research into evasion attacks has...
متن کاملAnalysis of Machine Learning Techniques used in Malware Classification in Cloud Computing Environment
Study the behavior of malicious software, understand the security challenges, detect the malware behavior automatically using dynamic approach. Study various classification techniques and to group these malwares and able to cluster different malware into unknown group whose characteristics are not known. The classifiers used in this research are k-Nearest Neighbors (kNN), J48 Decision Tree, and...
متن کاملWhen a Tree Falls: Using Diversity in Ensemble Classifiers to Identify Evasion in Malware Detectors
Machine learning classifiers are a vital component of modern malware and intrusion detection systems. However, past studies have shown that classifier based detection systems are susceptible to evasion attacks in practice. Improving the evasion resistance of learning based systems is an open problem. To address this, we introduce a novel method for identifying the observations on which an ensem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016